SHAPE OPTIMIZATION OF CONCRETE GRAVITY DAMS CONSIDERING DAM–WATER–FOUNDATION INTERACTION AND NONLINEAR EFFECTS

Authors

  • A. Akbarpour
  • H. Chiti
  • H. R. Naseri
  • M. Khatibinia
Abstract:

This study focuses on the shape optimization of concrete gravity dams considering dam–water–foundation interaction and nonlinear effects subject to earthquake. The concrete gravity dam is considered as a two–dimensional structure involving the geometry and material nonlinearity effects. For the description of the nonlinear behavior of concrete material under earthquake loads, the Drucker–Prager model based on the associated flow rule is adopted in this study. The optimum design of concrete gravity dams is achieved by the hybrid of an improved gravitational search algorithm (IGSA) and the orthogonal crossover (OC), called IGSA–OC. In order to reduce the computational cost of optimization process, the support vector machine approach is employed to approximate the dam response instead of directly evaluating it by a time–consuming finite element analysis. To demonstrate the nonlinear behavior of concrete material in the optimum design of concrete gravity dams, the shape optimization of a real dam is presented and compared with that of dam considering linear effect.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Shape Optimization of Concrete Gravity Dams Considering Dam–water–foundation Interaction and Nonlinear Effects

This study focuses on the shape optimization of concrete gravity dams considering dam– water–foundation interaction and nonlinear effects subject to earthquake. The concrete gravity dam is considered as a two–dimensional structure involving the geometry and material nonlinearity effects. For the description of the nonlinear behavior of concrete material under earthquake loads, the Drucker–Prage...

full text

Nonlinear Analysis of Concrete Gravity Dams by Neural Networks

Multi-layer neural networks have been used in this paper for modeling nonlinear behaviour of concrete gravity dams under earthquake excitation. Koyna dam which has been studied extensively by other authors in the past has been studied as test example in this paper too, where the nonlinear response of its crest has been modelled by the proposed algorithm. The main steps of the algorithm are as f...

full text

RELIABILITY–BASED DESIGN OPTIMIZATION OF CONCRETE GRAVITY DAMS USING SUBSET SIMULATION

The paper deals with the reliability–based design optimization (RBDO) of concrete gravity dams subjected to earthquake load using subset simulation. The optimization problem is formulated such that the optimal shape of concrete gravity dam described by a number of variables is found by minimizing the total cost of concrete gravity dam for the given target reliability. In order to achieve this p...

full text

Near-fault seismic damage patterns and failure scenarios prediction of concrete gravity dams using nonlinear incremental dynamic analysis

Performance based earthquake engineering approach has been under evolution for seismic safety assessment of structures. Qualitative and quantitative definition of seismic performance levels is major challenge of concrete gravity dams. The main purpose of this article is damage patterns and failure scenarios prediction of structure while they prepare a suitable basement to determine dam seismic ...

full text

Numerical Investigation of dip angle direction of foundation Joint on nonlinear dynamic response of concrete gravity dams

The stability of a gravity dam on a jointed rock foundation might be endangered by weak joints that may be present in the fracture network of the bed rock. A review of the literature shows that there are few studies of the effect of a weak joint in the foundation rock on the stability of dams. This research uses the finite difference numerical modelling software ABAQUS to model a gravity dam, t...

full text

Concrete Gravity Dams and Traveling Wave Effect along Reservoir Bottom

In the present article, effect of non-uniform excitation of reservoir bottom on nonlinear response of concrete gravity dams is considered. Anisotropic damage mechanics approach is used to model nonlinear behavior of mass concrete in 2D space. The tallest monolith of Pine Flat dam is selected as a case study. The horizontal and vertical components of 1967 Koyna earthquake is used to excite the s...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  115- 134

publication date 2016-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023